(1571-1630) Newton, "Daha ileriyi görebildiysem, bunu omuzlarından
baktığım devlere borçluyum," demişti. Bu devlerden biri Galileo ise diğeri
Kepler'dir.
Kepler'e
gelinceye dek Copernicus sistemine dayanaksız bir hipotez, ya da, işe yarar matematiksel
bir araç gözüyle bakılıyordu. Kepler, sistemin kimi düzeltmelerle bilimsel
doğruluğunu kanıtlamakla kalmadı, astronomiye mekanik bir kimlik
kazandırdı.
Gençlik
coşkusuyla işe koyulduğunda amacı mistik inancı doğrultusunda, "göksel
alemin müzikal uyumunu" geometrik olarak belirlemekti; çalışmasını
noktaladığında, astronomi matematiksel düzenlemenin ötesinde fiziksel bir
gerçeklik kazanmıştı. Ders kitaplarında daha çok üç yasasıyla bilinen Kepler,
uzay fiziğinde sonraki kimi önemli buluşların ipuçlarını da ortaya koymuştu.
Bunların başında eylemsizlik ilkesiyle çekim kavramı gösterilebilir.
Johannes
Kepler güney Almanya'da Weil kentinde dünyaya geldi. Dört yaşında geçirdiği
ağır çiçek hastalığı görme duyumunu zayıflatmış, ellerinde sakatlığa yol
açmıştı. Macera arayan sarhoş bir baba ile akıl dengesi bozuk bir annenin
çocuğu olmasına karşın, Kepler'in öğrencilik yılları parlak geçer. Ruhsal
güvensizlik içinde büyüyen Kepler, önce teolojiye yönelir; ancak üniversite
öğreniminde bilim ve matematiğin büyüleyici etkisinde kalır; sonunda Copernicus
sistemini benimsemekle kalmaz, sistemin doğruluğunu ispatlamak tutkusu içine
girer.
Daha
yirmiüç yaşında iken Graz Üniversitesi'nin çağrısını kabul ederek astronomi
profesörü, ardından kraliyet matematikçisi görevlerini yüklenir. Ne var ki,
rahat bir çalışma ortamı bulduğu Graz'da kalması fazla sürmez; dinsel çekişmede
yenik düşen Protestan azınlıkla birlikte kenti terk etmek zorunda kalır.
Kepler
işsiz kalmıştır, ama bu ona meslek yaşamının belki de en büyük şans kapısını
açar: öteden beri çalışmalarına hayranlık duyduğu Danimarka'lı ünlü astronom Tycho
Brahe'nin asistanı olur. Gerçi kişilik yönünden ustası ile uyum kurması kolay
olmayacaktı; üstelik Tycho tanrısal düzene aykırı saydığı güneş-merkezli
sisteme karşıydı. Ona göre gezegenler güneşin, güneş de dünyanın çevresinde
dönmekteydi. Ne ki, çok geçmeden usta yaşamını yitirir (1601); gözlemeviyle
birlikte yılların yoğun emeğiyle toplanmış son derece güvenilir gözlem ve ölçme
verilerine Kepler sahip çıkar.
Kepler'in
resmi görevi astroloji almanakları hazırlamaktı. Zaten yetersiz olan maaşı çoğu
kez ödenmiyordu bile. Soyluların yıldız falına bakarak geçimini sağlıyordu.
Astronomlar için ek kazanç kaynağı gözüyle bakıp bir bakıma küçümsediği
astrolojiye inanmadığı da kolayca söylenemez.
Yukarda
da belirttiğimiz gibi, Kepler'in amacı "göksel mimarlık" dediği
düzende aradığı matematik uyumu kurmaktı. Graz'dan ayrılmadan önce yayımlanan
Göksel Gizem adlı kitabında, gezegenlerin devinimlerini geometrik çizgi ve
eğrilerle belirleme yoluna gitmiş, o zaman bilinen altı gezegene ait
yörüngelerin, belli bir sıra içinde içice yerleştirilen beş düzgün geometrik
nesnenin oluşturduğu altı aralığa denk düştüğünü ispata çalışmıştı
("Yetkin nesne" denen bu çok yüzlü cisimler şunlardır:
(1)
dört eşkenar üçgen yüzlü (piramit),
(2)
altı kare yüzlü (küp),
(3)
sekiz eşkenar üçgen yüzlü,
(4)
oniki eşkenar beşgen yüzlü,
(5)
yirmi eşkenar üçgen yüzlü.
Bilindiği
gibi iki boyutlu düzlemde istenilen sayıda çokgen şekil çizilebilir; oysa üç
boyutlu uzayda yalnızca sıraladığımız bu beş çok yüzlü düzgün nesne
oluşturulabilir). Antik çağdan beri bilinen bu beş nesnenin gizemli bir
niteliği olduğu inancı pek de yersiz değildi. Gerçekten, yetkin simetrik olan
bu nesnelerin her biri tüm köşelerinin dokunduğu bir küre içine
yerleştirilebilir. Aynı şekilde, her biri tüm yüzlerinin orta noktasına dokunan
bir daireyi çevreleyebilir.
Örneğin,
Satürn yörüngesini içeren küreye bir küp yerleştirilecek olsa Jüpiter'in küresi
bu küpün içine; ya da, Jüpiter'in küresine bir piramit (dört eşkenar üçgen
yüzlü nesne) yerleştirilecek olsa Mars'ın küresi bu piramidin içine tıpatıp
uyacaktır. Aynı düzenleme geriye kalan gezegen yörüngeleriyle çok yüzlü düzgün
nesnelerle de gerçekleşmektedir. Kepler en büyük coşkusunu bu düzenlemeye
yönelik araştırmasında yaşamıştır.
Düzgün
geometrik nesnelerle gezegen yörüngeleri arasında varsayılan ilişki olgusal
temelden yoksundu kuşkusuz; ama, gezegenlere ait yörünge büyüklükleri arasında
bir tür korelasyon olduğu düşüncesinde bir gerçek payı vardı. Nitekim Kepler'in
yirmi yıl sonra formüle ettiği üçüncü yasası bu düşünceden
kaynaklanmıştır.
Tycho'nun
gözlemevine yerleşen kepler, gençliğinin çoğu akıl-dışı saplantılarından
tümüyle kurtulmazsa da, giderek daha olgun, olgusal verilere daha bağlı bir
kimlik kazanır. Tycho'nun ona verdiği görev gezegen yörüngelerini belirlemeye
yönelikti; incelemeye koyulduğu ilk yörünge de beklentiye en çok aykırı düşen
Mars'ın gözlemlenen yörüngesiydi.
Kepler,
yoğun bir uğraşa karşın yıllarca, gözlem verileriyle uyum kurmaya çalıştığı
çembersel yörünge arasındaki farkı gideremedi. Bu demekti ki, çembersel yörünge
beklentisinde bir yanlışlık olmalıydı. Ne var ki, göksel düzeyde yetkinlik
arayışı içinde olan Kepler bu olasılığı bir türlü içine sindiremiyordu.
Çembersel olmayan bir yörünge (ki, Kepler için bu bir "pislik"ti)
nasıl düşünülebilirdi? Ama olgular da bir yana itilemezdi!
Bu
tür açmazların etkisinde Kepler zamanla astronomide geometrik uyum arayışından
fiziksel etki arayışına girer. Copernicus için güneşin merkez konumu salt
matematiksel bir belirlemeydi; oysa Kepler buna fiziksel bir gerçeklik tanıma
gereğini duymaya başlar. Tüm gezegen yörünge düzlemlerinin güneşin merkezinden
geçmesi olayı, bu yönelişi doğrulayıcı nitelikteydi. Mars'ın yörüngesi
üzerindeki çalışması bir olguyu daha gün ışığına çıkarmıştı: gezegenin
yörüngesi üzerindeki hızının değişik noktalarda değişik olduğu gerçeği.
Öyle
ki, gezegenin güneşe yaklaştığında hızı artmakta, uzaklaştığında hızı
azalmaktaydı. Kepler bu ilişkiyi ikinci yasasında şöyle dile getirir: güneş ile
gezegen arasındaki yarıçap vektörü yörünge düzleminde eşit zamanlarda eşit
alanlar süpürür. Yaptığı tüm ölçmelerin doğruladığı bu ilişki de çembersel
yörünge beklentisiyle bağdaşmamaktaydı.
Kepler
ister istemez başka bir yörünge biçimine yönelmek zorundaydı. Gözlemler
yörüngenin elips biçiminde olduğunu ortaya koyuyordu. Mars'ın yörüngesine
ilişkin bu buluşunu Kepler daha sonra birinci yasası olarak tüm gezegenler için
genelleme yoluna gider: Her gezegen, bir odağında güneşin yer aldığı bir elips
çizerek devinir.
Kepler
ilk iki yasasını, 1609'da yayımlanan Yeni Astronomi adlı kitabında ortaya
koymuştu. Üçüncü yasasını aradan dokuz yıl geçtikten sonra oluşturur: Bir
gezegenin yörüngesini tamamlamada geçirdiği sürenin karesi, güneşe olan
ortalama uzaklığının küpüyle orantılıdır. Buna göre, gezegenin periyodik
süresini T ile, yörüngesinin ortalama yarı çapım r ile gösterirsek, oranı tüm
gezegenler için aynıdır. "Harmonik yasa" diye bilinen bu ilişki,
yörüngelerini tamamlama süresi bakımından gezegenlerin mukayesesine olanak
vermektedir.
Daha
da önemlisi, ilişkinin ilerde Newton'un formüle ettiği yerçekimi yasasına
sağladığı ipucudur. Oysa Kepler bu son buluşuna, gençlik yıllarından beri
arayışı içinde olduğu "küreler uyumunun" formülü gözüyle bakıyordu.
Uyumsuz bir evrenin onun için bir anlamı yoktu. Güneş gezegenleri yönetme
gücüne sahipse, göksel devinimlerin formülünde dile gelen türden bir ilişki
içermesi gerekirdi.
Kepler'in
gerçeği bulma yolunda verdiği çabanın bir benzerini bilim tarihinde göstermek
güçtür. Şu sözlerinde derin araştırma tutkusu az da olsa yansımaktadır:
"Çalışmamın karmaşık görünen sonuçlarını izlemede zorlanıyorsanız, bana
kızmayınız; çektiğim sıkıntılar için bana acıyınız. Sunduğum her sonuca
yüzlerce kez yinelediğim sınama ve hesaplamalarla ulaştım. Sadece Mars'ın
yörüngesini belirlemem beş yılımı aldı."
Copernicus
gibi Kepler de Pythagoras'dan kaynaklanan sayı mistisizminin etkisindeydi.
Evrenin geometrik bir düzenlemeyle kurulduğu inancını hiç bir zaman yitirmedi.
Onun gözünde güneş tanrısal bir güçtü. Güneş sisteminde yalnızca altı gezegenin
bulunmasına (Uranüs, Neptün ve Plüton henüz bilinmiyordu) koşut olarak
geometride yalnızca beş düzgün çok yüzlü nesneye olanak olması rastlantı değil,
merak konusu bir gizemdi. Astronominin temelini oluşturan üç yasası bu gizemin
büyüsünde ömür boyu sürdürdüğü çalışmanın bir bakıma yan ürünüdür.
Kepler'in
kendisi gibi dönemin bilim çevrelerinin de (bu arada Galileo'nun) bu yasaları
yeterince önemsediği söylenemez. Newton'un bir başarısı da, Kepler'in
kitaplarında adeta gömülü kalan bu yasaların gerçek önemini kavramış
olmasıdır.
Kepler
asıl hayal ettiği şeyi (göksel kürelerin müzikal uyumunu) belki
gerçekleştiremedi; ama gerçekleştirdiği şey ona bilim tarihinde
"Astronominin Prensi" unvanını kazandırmaya yetti.
KAYNAK|http://gelisenbeyin.net/ den alıntıdır
0 yorum:
Yorum Gönder